Mathematics 1c, Spring 2008
Solutions to the Midterm Exam
J. Marsden

Print Your Name:

Your Section:

This exam has five questions.
You may take three hours; there is no credit for overtime work
No aids (including notes, books, calculators etc.) are permitted.

The exam must be turned in by moon on Wednesday, May 7.
Please turn in your exam to the Math 1C Exam Drop Slot outside
Room 255 Sloan.

All 5 questions should be answered on this exam, using the backs of
the sheets or appended pages if necessary.

Show all your work and justify all claims using plain English.
Each question is worth 20 points.
The exam has pages numbered 1-6, including this cover sheet.

Good Luck !!
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(a) Compute the orthogonal projection of the vector i + j + k onto
the subspace W C R? that is spanned by the two vectors i and
i+j—k

(b) Let V be the vector space of polynomials of degree 3. Define the
operator T : V' — V by T(f) = xf’. Show T is diagonalizable.

(c) Suppose that A = [CCL Z} is a 2 X 2 matrix. Assemble a 3 x 3

matrix B using the following notation:

a b 0
B:{AO}:ch
0 01

0 1
Show that 22
2 0
-y
(d) Compute
r 5 o1
-1 =2 0
| 0 0 1}
and ) o1
2 3 0
-1 -2 0
| 0 0 1}
Solution.

(a) First of all, orthonormalize the two vectors i and i+j—k to produce
the orthonormal basis of W given by v; =i and v, = (j —k)/v/2.
Letting u =i+ j + k, the orthogonal projection is then given by

(U’Vl)V1+(U'V2)V2:i—f—O(j—k)/\/E:i



(b)

The space V' has dimension 4 and by inspection, there are four
distinct eigenvalues 0, 1, 2, 3 with associated eigenvectors given by
the polynomials 1, x, 2%, 23, Since their are 4 distinct eigenvalues
(or directly the eigenvectors form a basis), the operator is diago-

nalizable.

One verifies this by a simple direct calculation.

If we let A = _21 _32} and construct B as in part (c), we get

the given matrix. As in (c), raised to the 100th power, it is

AlOO 0

100 _
A

100
1—010
0 01

and similarly
BlOl — B

The computation of A% and A was done explicitly in lecture.

This can be done in a couple of ways.

Method 1. Perhaps the simplest way is to directly compute that
A? = Identity and thus, A0 = Identity and Al = A.

Method 2—the one done in lecture. Another, more generally
applicable method, is as follows. First, compute that the eigen-
values of A are 1 and —1. Since the eigenvalues are distinct, A
is diagonalizable. Thus, A = QD@ !, where D is the diagonal
matrix with diagonal entries 1,—1 and @ is the matrix whose

columns are the two eigenvectors. Clearly D% = Identity and so
(as was explained in lecture), A% = QD' Q"1 = Identity. Then
A0l = A



1 €
2. Let A, be the matrix A, = |0 1 , where € is a real number.
0 0

_ o O

(a) For what values of € is A, orthogonal?

(b) Assume € # 0. Find the eigenvalues and corresponding eigenspaces
of A..

(c) Assume € # 0. Show that A, is not diagonalizable.

(d) Let € be any real number. Define the function F' : R — R by

letting F'(¢) equal the dimension of the eigenspace of A, corre-
sponding to eigenvalue 1. Is F' continuous at € = 07 Hint: use (b)
to find lim._F'(¢), and compare this to F(0).

Solution.

(a) There are a couple of ways one can do the first part.

Method 1. The columns of an orthogonal matrix are orthonor-
mal vectors. Note that the second column of A, has square length
1 + €2, so this equals one if and only if € = 0, in which case A, is
the identity, an orthogonal matrix. Thus, A, is orthogonal if and

only if e = 0.

Method 2. A, is orthogonal when AT A, = I. Calculate

1 € Of |1 0 O 1+€ € 0
ATA, =10 1 0|l e 1 Ol =| € 10
00 1|0 01 0 01

Hence A, is orthogonal if and only if € is zero.

(b) det(M — A.) = (A — 1), so A, has the single eigenvalue A\ = 1.

The corresponding eigenspace is

0 — O 1 0
ker(/ — A;) =ker [0 0 0| =spang |0f, [0
0 0 0 0 1

since € # 0.



(c) We see in (b) that for € # 0, A, does not have a basis of eigenvec-

tors. Therefore A, is not diagonalizable.

(d) From (b) we know that the eigenspace corresponding to eigen-

1 0
value 1 is spang [0, |0 for € # 0; hence F(e) = 2 for
0 1

€ # 0. So lim._oF(e) = 2. To calculate F(0), note that Ay is
just the identity matrix which has a full basis of eigenvectors (for
instance, {ej,es,e3} is a basis of eigenvectors). So F(0) = 3.
Since lim,_oF'(e) = 2 # 3 = F(0), F' is not continuous at ¢ = 0.

3. Let g(z,y, 2) be a smooth function defined on the whole of R3.

(a) If Vg has negative x component in the half space x > 0, must

g(1,3,8) be bigger than ¢(2,3,8), and must ¢(0,2,8) be bigger
than ¢(3,3,8)? In each case prove or give a counter-example.

Let f(z,y) = 23 + 3y* — 22%y + 6.

(b) Find V at (2,3).

(c) Find the equation of the tangent plane to the graph of f at the

(d)

(e)

point (z,y) = (2, 3).

In what direction is the function f decreasing the most, and what

)?

is the rate of decrease in that direction?

What is the rate of decrease of f in the direction <

SIL

1
V2’

Solution.

(a)

i. If Vg has negative x component for x > 0 then the one-
dimensional function h(x) = g(z, 3, 8) has negative derivative
for x > 0 and thus is decreasing. [Extra: recall from one vari-
able calculus that one proves this by the mean value theorem
(e.g. by assuming h(1) < h(2) and getting a contradiction)].
Thus, as ¢ is decreasing, ¢(1,3,8) > ¢(2,3,8).
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ii. Let g = (—x,10y,0), then Vg = (—1,10,0). Note, however,
that ¢(0,2,8) = 20 < ¢(3,3,8) = 27, and so we have a coun-

terexample. There are many other possible counterexamples.
(b) Vf = (32 — 4xy, 6y — 22%) and thus Vf(2,3) = (—12,10).
(¢) The equation for the tangent plane at (xg, o) is

0 0
z = f(xo,90) + 8—£(Zv —x0) + 8—];(?/ — Yo)

So given that V f(2,3) = (g—i, g—g), we have

z=17—-12(x — 2) + 10(y — 3)
So the tangent plane equation is

z=11—-12z + 10y

(d) f is decreasing the fastest in the direction —V f(2,3) = (12, —10).
The rate of decrease is || — V £(2,3)|| = /122 4+ (—10)% = /244 =
2V/61.

(e) Since the vector is already normalized, this is determined by com-

puting

V2'V2 V2

So 111/2 is the rate of decrease.

Vf(2,3).( ! _1) V)

4. Consider the functions A and B defined on R3 as follows:
A(z,y,2) = 2* + oy — sin(ay), B(z,y, 2) = 2% cos(?).

(a) Suppose x and y are functions of two other variables, r and s.
Write down the partials of A and B with respect to r and s in

matrix notation.



(b) Simplify the your answer in (a) if z =s+r, y=sr, z=s—r1.
Let f(x,y) = 2® — 3zy + bx — 2y + 6y — 8.

(c¢) Find the critical points of f.

(d) Characterize the critical points in terms of maxima, minima, or

saddle points.

Solution.

(a) Let F' be the mapping (r,s) — (A, B). Then by the chain rule,

[0A 0A
Os or
DF =
9B 0B
L Os or
dz Oz
[0A 04 0A ds  Or
o ox dy Oz oy Oy
~ |aB 9B 9B ds  or
L Ox oy 0z 92 Oz
9s or
Oz Oz
r Os or
B 2r +y —ycosxry T — T CosSTY 0 oy oy
- . ds 0O
2y cos 22 202y cos 2?2 —22%y?z sin 22 5o
- 9z Oz
Os or

(b) Putting x = s+r, y = sr, and z = s — r, we see that DF' equals
AB, where A is

2(s+7)+sr—srcos|[(s+71)sr] (s+71)—(s+7)cos|[(s+r)sr] 0
2(s + )52 cos(s — )2 (s +r)2srcos(s — )2 —2(s+1)2s2r2(s — ) sin(s — 7)2

and B is
1 1
r s
1 -1

If one were to multiply this out, one would get, for example,

% =2(s+7r)+sr—srcos[(s+r)sr]+r[(s+1)— (s+ 1) cos[(s + r)sr]]

= 254 2r + 257 + 1% — r? cos|(s + r)sr].



(c¢) The critical points are found by setting the partial derivatives of
f equal to zero; this gives the system
20 =3y+5=0
—3r+12y —2=0
Solving this system, we see that the only critical point is (—18/5, —11/15).

(d) The above critical point is a local (in fact, global) minimum, as

can be seen from the fact that the Hessian is positive definite. The

112 -3

2 1—3 12
The top left entry is 0?f/0z* = 2 > 0 and the determinant is
15 > 0, so the Hessian is indeed positive definite.

Hessian is

(a) Find the maxima and minima of the function

fla,y) =22y — 2* — 2.
on the region 22 + 32 < 1.

(b) Find the extrema of f(z,y) = xy subject to the three conditions
20+ 3y < 10,0 < 2,0 <.

(c) Consider the function f(z,y) = az® + 2bxy + cy?. Suppose that

the eigenvalues of the matrix

a b
b ¢
are both positive. Must the origin be a minimum of f?

Solution.

(a) The critical points of f are found by solving the system

af

O Ty r=20
af 9

Dy T y =0,



which gives the critical points (0,0) and (£1/4/2,1/2). Both
points are inside the unit circle. The second derivative matrix
is

{4y -2 4:1)]

dx -2

which is negative definite at the origin (so the origin is a local
maximum, with f(0,0) = 0) and it is indefinite at the points
(£1//2,1/2), which are therefore saddle points.

One must now examine the behavior of f on the boundary using
Lagrange multipliers. The Lagrange multiplier conditions (V f =
AVg and g = 0), give (after canceling factors of 2):

20y —x = \x
-y =Ny
P4y —1=0

If x = 0, the solution is (0,£1) and if x # 0, the solution is found
by canceling x in the first equation, solving for y and substitut-
ing into the remaining equations. This gives A\ = 4+2/v/3 — 1,
r = +4/2/3 and y = £1/+/3. Evaluating f at these points gives
the answer: (0,0) is a maximum and the minimum value of f is
(=9 — 44/3)/9, which occurs at the points (4+/2/3, —1/4/3) on
the boundary.

The region on which f is defined is the triangle in the first quad-
rant of the xy-plane bounded by the axes and the line 2zx+3y = 10.
Since f, =y, fy, = x, we see there is no critical point strictly inside

this region. Thus, the extrema must be on the boundary.

The boundary of this triangular region consists of 3 straight line
segments, and we need to find the absolute maximum and mini-
mum of f on this boundary. Clearly f = 0 on both x = 0 and

y = 0; since f > 0 in the region, the minimum value of 0 occurs



on the two axes. To find the maximum, we only need to solve the

following Lagrange multiplier system with x > 0 and y > 0:

y = 2\
r = 3\
20 +3y = 10
Solving these gives A = %,x = g,y = g Also, f(g7 g) = %_

In summary, the absolute maximum value is % which occurs at
the point (5/2,5/3) and the absolute minimum value of 0 occurs

at points on the two axes.

Yes. Call the eigenvalues A and p. The condition that A > 0
and p > 0 is equivalent to the positive definiteness of the Hessian,

which is half of the second derivative matrix,
a b
A= {b } |
One should relate this to the second derivative conditions given
in the book, namely that @ > 0 and ac — b*> > 0. One way to do
this is as follows. Taking the trace and determinant of A (recall

that the trace is the sum of the eigenvalues and the determinant

is their product), we get

A+ pu=a+c
Mt = ac — b

From this, it is clear that the conditions a > 0 and ac — b* > 0

are equivalent to the conditions A > 0 and p > 0.
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