
Mathematics 1c, Spring 2008

Solutions to the Midterm Exam

J. Marsden

Print Your Name:
Your Section:

• This exam has five questions.

• You may take three hours; there is no credit for overtime work

• No aids (including notes, books, calculators etc.) are permitted.

• The exam must be turned in by noon on Wednesday, May 7.
Please turn in your exam to the Math 1C Exam Drop Slot outside
Room 255 Sloan.

• All 5 questions should be answered on this exam, using the backs of
the sheets or appended pages if necessary.

• Show all your work and justify all claims using plain English.

• Each question is worth 20 points.

• The exam has pages numbered 1–6, including this cover sheet.

• Good Luck !!
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1.

(a) Compute the orthogonal projection of the vector i + j + k onto

the subspace W ⊂ R3 that is spanned by the two vectors i and

i + j− k.

(b) Let V be the vector space of polynomials of degree 3. Define the

operator T : V → V by T (f) = xf ′. Show T is diagonalizable.

(c) Suppose that A =

[
a b
c d

]
is a 2 × 2 matrix. Assemble a 3 × 3

matrix B using the following notation:

B =

[
A 0
0 1

]
=

a b 0
c d 0
0 0 1


Show that

B2 =

[
A2 0
0 1

]
(d) Compute  2 3 0

−1 −2 0
0 0 1

100

and  2 3 0
−1 −2 0
0 0 1

101

Solution.

(a) First of all, orthonormalize the two vectors i and i+j−k to produce

the orthonormal basis of W given by v1 = i and v2 = (j−k)/
√

2.

Letting u = i + j + k, the orthogonal projection is then given by

(u · v1)v1 + (u · v2)v2 = i + 0(j− k)/
√

2 = i
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(b) The space V has dimension 4 and by inspection, there are four

distinct eigenvalues 0, 1, 2, 3 with associated eigenvectors given by

the polynomials 1, x, x2, x3. Since their are 4 distinct eigenvalues

(or directly the eigenvectors form a basis), the operator is diago-

nalizable.

(c) One verifies this by a simple direct calculation.

(d) If we let A =

[
2 3
−1 −2

]
and construct B as in part (c), we get

the given matrix. As in (c), raised to the 100th power, it is

B100 =

[
A100 0

0 1

]
=

1 0 0
0 1 0
0 0 1


and similarly

B101 = B

The computation of A100 and A101 was done explicitly in lecture.

This can be done in a couple of ways.

Method 1. Perhaps the simplest way is to directly compute that

A2 = Identity and thus, A100 = Identity and A101 = A.

Method 2–the one done in lecture. Another, more generally

applicable method, is as follows. First, compute that the eigen-

values of A are 1 and −1. Since the eigenvalues are distinct, A

is diagonalizable. Thus, A = QDQ−1, where D is the diagonal

matrix with diagonal entries 1,−1 and Q is the matrix whose

columns are the two eigenvectors. Clearly D100 = Identity and so

(as was explained in lecture), A100 = QD100Q−1 = Identity. Then

A101 = A.
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2. Let Aε be the matrix Aε =

1 ε 0
0 1 0
0 0 1

, where ε is a real number.

(a) For what values of ε is Aε orthogonal?

(b) Assume ε 6= 0. Find the eigenvalues and corresponding eigenspaces

of Aε.

(c) Assume ε 6= 0. Show that Aε is not diagonalizable.

(d) Let ε be any real number. Define the function F : R → R by

letting F (ε) equal the dimension of the eigenspace of Aε corre-

sponding to eigenvalue 1. Is F continuous at ε = 0? Hint: use (b)

to find limε→0F (ε), and compare this to F (0).

Solution.

(a) There are a couple of ways one can do the first part.

Method 1. The columns of an orthogonal matrix are orthonor-

mal vectors. Note that the second column of Aε has square length

1 + ε2, so this equals one if and only if ε = 0, in which case Aε is

the identity, an orthogonal matrix. Thus, Aε is orthogonal if and

only if ε = 0.

Method 2. Aε is orthogonal when ATε Aε = I. Calculate

ATε Aε =

1 ε 0
0 1 0
0 0 1

1 0 0
ε 1 0
0 0 1

 =

1 + ε2 ε 0
ε 1 0
0 0 1

 .
Hence Aε is orthogonal if and only if ε is zero.

(b) det(λI − Aε) = (λ − 1)3, so Aε has the single eigenvalue λ = 1.

The corresponding eigenspace is

ker(I − Aε) = ker

0 −ε 0
0 0 0
0 0 0

 = span


1

0
0

 ,
0

0
1


since ε 6= 0.
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(c) We see in (b) that for ε 6= 0, Aε does not have a basis of eigenvec-

tors. Therefore Aε is not diagonalizable.

(d) From (b) we know that the eigenspace corresponding to eigen-

value 1 is span


1

0
0

 ,
0

0
1

 for ε 6= 0; hence F (ε) = 2 for

ε 6= 0. So limε→0F (ε) = 2. To calculate F (0), note that A0 is

just the identity matrix which has a full basis of eigenvectors (for

instance, {e1, e2, e3} is a basis of eigenvectors). So F (0) = 3.

Since limε→0F (ε) = 2 6= 3 = F (0), F is not continuous at ε = 0.

3. Let g(x, y, z) be a smooth function defined on the whole of R3.

(a) If ∇g has negative x component in the half space x ≥ 0, must

g(1, 3, 8) be bigger than g(2, 3, 8), and must g(0, 2, 8) be bigger

than g(3, 3, 8)? In each case prove or give a counter-example.

Let f(x, y) = x3 + 3y2 − 2x2y + 6.

(b) Find ∇f at (2, 3).

(c) Find the equation of the tangent plane to the graph of f at the

point (x, y) = (2, 3).

(d) In what direction is the function f decreasing the most, and what

is the rate of decrease in that direction?

(e) What is the rate of decrease of f in the direction
(

1√
2
, −1√

2

)
?

Solution.

(a) i. If ∇g has negative x component for x ≥ 0 then the one-

dimensional function h(x) = g(x, 3, 8) has negative derivative

for x ≥ 0 and thus is decreasing. [Extra: recall from one vari-

able calculus that one proves this by the mean value theorem

(e.g. by assuming h(1) ≤ h(2) and getting a contradiction)].

Thus, as g is decreasing, g(1, 3, 8) > g(2, 3, 8).
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ii. Let g = (−x, 10y, 0), then ∇g = (−1, 10, 0). Note, however,

that g(0, 2, 8) = 20 < g(3, 3, 8) = 27, and so we have a coun-

terexample. There are many other possible counterexamples.

(b) ∇f = (3x2 − 4xy, 6y − 2x2) and thus ∇f(2, 3) = (−12, 10).

(c) The equation for the tangent plane at (x0, y0) is

z = f(x0, y0) +
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0)

So given that ∇f(2, 3) = (∂f
∂x
, ∂f
∂y

), we have

z = 17− 12(x− 2) + 10(y − 3)

So the tangent plane equation is

z = 11− 12x+ 10y

(d) f is decreasing the fastest in the direction −∇f(2, 3) = (12,−10).

The rate of decrease is ||−∇f(2, 3)|| =
√

122 + (−10)2 =
√

244 =

2
√

61.

(e) Since the vector is already normalized, this is determined by com-

puting

∇f(2, 3).

(
1√
2
,
−1√

2

)
=
−12− 10√

2
= −11

√
2

So 11
√

2 is the rate of decrease.

4. Consider the functions A and B defined on R3 as follows:

A(x, y, z) = x2 + xy − sin(xy), B(x, y, z) = x2y2 cos(z2).

(a) Suppose x and y are functions of two other variables, r and s.

Write down the partials of A and B with respect to r and s in

matrix notation.
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(b) Simplify the your answer in (a) if x = s+ r, y = sr, z = s− r.

Let f(x, y) = x2 − 3xy + 5x− 2y + 6y2 − 8.

(c) Find the critical points of f .

(d) Characterize the critical points in terms of maxima, minima, or

saddle points.

Solution.

(a) Let F be the mapping (r, s) 7→ (A,B). Then by the chain rule,

DF =

[
∂A
∂s

∂A
∂r

∂B
∂s

∂B
∂r

]

=

[
∂A
∂x

∂A
∂y

∂A
∂z

∂B
∂x

∂B
∂y

∂B
∂z

]
·


∂x
∂s

∂x
∂r

∂y
∂s

∂y
∂r

∂z
∂s

∂z
∂r



=

[
2x+ y − y cosxy x− x cosxy 0

2xy2 cos z2 2x2y cos z2 −2x2y2z sin z2

]
·


∂x
∂s

∂x
∂r

∂y
∂s

∂y
∂r

∂z
∂s

∂z
∂r


(b) Putting x = s+ r, y = sr, and z = s− r, we see that DF equals

AB, where A is[
2(s + r) + sr − sr cos[(s + r)sr] (s + r)− (s + r) cos[(s + r)sr] 0

2(s + r)s2r2 cos(s− r)2 2(s + r)2sr cos(s− r)2 −2(s + r)2s2r2(s− r) sin(s− r)2

]
and B is 

1 1

r s

1 −1


If one were to multiply this out, one would get, for example,

∂A

∂s
= 2(s+ r) + sr − sr cos[(s+ r)sr] + r[(s+ r)− (s+ r) cos[(s+ r)sr]]

= 2s+ 2r + 2sr + r2 − r2 cos[(s+ r)sr].
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(c) The critical points are found by setting the partial derivatives of

f equal to zero; this gives the system

2x− 3y + 5 = 0

−3x+ 12y − 2 = 0

Solving this system, we see that the only critical point is (−18/5,−11/15).

(d) The above critical point is a local (in fact, global) minimum, as

can be seen from the fact that the Hessian is positive definite. The

Hessian is
1

2

[
2 −3
−3 12

]
The top left entry is ∂2f/∂x2 = 2 > 0 and the determinant is

15 > 0, so the Hessian is indeed positive definite.

5. (a) Find the maxima and minima of the function

f(x, y) = 2x2y − x2 − y2.

on the region x2 + y2 ≤ 1.

(b) Find the extrema of f(x, y) = xy subject to the three conditions

2x+ 3y ≤ 10, 0 ≤ x, 0 ≤ y.

(c) Consider the function f(x, y) = a x2 + 2b xy + c y2. Suppose that

the eigenvalues of the matrix[
a b
b c

]
are both positive. Must the origin be a minimum of f?

Solution.

(a) The critical points of f are found by solving the system

∂f

∂x
= 4xy − 2x = 0

∂f

∂y
= 2x2 − 2y = 0,
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which gives the critical points (0, 0) and (±1/
√

2, 1/2). Both

points are inside the unit circle. The second derivative matrix

is [
4y − 2 4x

4x −2

]
which is negative definite at the origin (so the origin is a local

maximum, with f(0, 0) = 0) and it is indefinite at the points

(±1/
√

2, 1/2), which are therefore saddle points.

One must now examine the behavior of f on the boundary using

Lagrange multipliers. The Lagrange multiplier conditions (∇f =

λ∇g and g = 0), give (after canceling factors of 2):

2xy − x = λx

x2 − y = λy

x2 + y2 − 1 = 0

If x = 0, the solution is (0,±1) and if x 6= 0, the solution is found

by canceling x in the first equation, solving for y and substitut-

ing into the remaining equations. This gives λ = ±2/
√

3 − 1,

x = ±
√

2/3 and y = ±1/
√

3. Evaluating f at these points gives

the answer: (0, 0) is a maximum and the minimum value of f is

(−9 − 4
√

3)/9, which occurs at the points (±
√

2/3,−1/
√

3) on

the boundary.

(b) The region on which f is defined is the triangle in the first quad-

rant of the xy-plane bounded by the axes and the line 2x+3y = 10.

Since fx = y, fy = x, we see there is no critical point strictly inside

this region. Thus, the extrema must be on the boundary.

The boundary of this triangular region consists of 3 straight line

segments, and we need to find the absolute maximum and mini-

mum of f on this boundary. Clearly f = 0 on both x = 0 and

y = 0; since f ≥ 0 in the region, the minimum value of 0 occurs
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on the two axes. To find the maximum, we only need to solve the

following Lagrange multiplier system with x > 0 and y > 0:

y = 2λ

x = 3λ

2x+ 3y = 10

Solving these gives λ = 5
6
, x = 5

2
, y = 5

3
. Also, f(5

2
, 5

3
) = 25

6
.

In summary, the absolute maximum value is 25
6

which occurs at

the point (5/2, 5/3) and the absolute minimum value of 0 occurs

at points on the two axes.

(c) Yes. Call the eigenvalues λ and µ. The condition that λ > 0

and µ > 0 is equivalent to the positive definiteness of the Hessian,

which is half of the second derivative matrix,

A =

[
a b
b c

]
.

One should relate this to the second derivative conditions given

in the book, namely that a > 0 and ac − b2 > 0. One way to do

this is as follows. Taking the trace and determinant of A (recall

that the trace is the sum of the eigenvalues and the determinant

is their product), we get

λ+ µ = a+ c

λµ = ac− b2

From this, it is clear that the conditions a > 0 and ac − b2 > 0

are equivalent to the conditions λ > 0 and µ > 0.
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