Mathematics 1c, Spring 2008 Solutions to the Midterm Exam

J. Marsden

Print Your Name:

Your Section:

- This exam has five questions.
- You may take three hours; there is no credit for overtime work
- No aids (including notes, books, calculators etc.) are permitted.
- The exam must be turned in by noon on Wednesday, May 7. Please turn in your exam to the Math 1C Exam Drop Slot outside Room 255 Sloan.
- All 5 questions should be answered on this exam, using the backs of the sheets or appended pages if necessary.
- Show all your work and justify all claims using plain English.
- Each question is worth 20 points.
- The exam has pages numbered 1-6, including this cover sheet.
- Good Luck !!

1.

(a) Compute the orthogonal projection of the vector $\mathbf{i}+\mathbf{j}+\mathbf{k}$ onto the subspace $W \subset \mathbb{R}^{3}$ that is spanned by the two vectors \mathbf{i} and $\mathbf{i}+\mathbf{j}-\mathbf{k}$.
(b) Let V be the vector space of polynomials of degree 3. Define the operator $T: V \rightarrow V$ by $T(f)=x f^{\prime}$. Show T is diagonalizable.
(c) Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is a 2×2 matrix. Assemble a 3×3 matrix B using the following notation:

$$
B=\left[\begin{array}{ll}
A & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Show that

$$
B^{2}=\left[\begin{array}{cc}
A^{2} & 0 \\
0 & 1
\end{array}\right]
$$

(d) Compute

$$
\left[\begin{array}{ccc}
2 & 3 & 0 \\
-1 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]^{100}
$$

and

$$
\left[\begin{array}{ccc}
2 & 3 & 0 \\
-1 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]^{101}
$$

Solution.

(a) First of all, orthonormalize the two vectors \mathbf{i} and $\mathbf{i}+\mathbf{j}-\mathbf{k}$ to produce the orthonormal basis of W given by $\mathbf{v}_{1}=\mathbf{i}$ and $\mathbf{v}_{2}=(\mathbf{j}-\mathbf{k}) / \sqrt{2}$. Letting $\mathbf{u}=\mathbf{i}+\mathbf{j}+\mathbf{k}$, the orthogonal projection is then given by

$$
\left(\mathbf{u} \cdot \mathbf{v}_{1}\right) \mathbf{v}_{1}+\left(\mathbf{u} \cdot \mathbf{v}_{2}\right) \mathbf{v}_{2}=\mathbf{i}+0(\mathbf{j}-\mathbf{k}) / \sqrt{2}=\mathbf{i}
$$

(b) The space V has dimension 4 and by inspection, there are four distinct eigenvalues $0,1,2,3$ with associated eigenvectors given by the polynomials $1, x, x^{2}, x^{3}$. Since their are 4 distinct eigenvalues (or directly the eigenvectors form a basis), the operator is diagonalizable.
(c) One verifies this by a simple direct calculation.
(d) If we let $A=\left[\begin{array}{cc}2 & 3 \\ -1 & -2\end{array}\right]$ and construct B as in part (c), we get the given matrix. As in (c), raised to the 100th power, it is

$$
B^{100}=\left[\begin{array}{cc}
A^{100} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and similarly

$$
B^{101}=B
$$

The computation of A^{100} and A^{101} was done explicitly in lecture. This can be done in a couple of ways.

Method 1. Perhaps the simplest way is to directly compute that $A^{2}=$ Identity and thus, $A^{100}=$ Identity and $A^{101}=A$.

Method 2-the one done in lecture. Another, more generally applicable method, is as follows. First, compute that the eigenvalues of A are 1 and -1 . Since the eigenvalues are distinct, A is diagonalizable. Thus, $A=Q D Q^{-1}$, where D is the diagonal matrix with diagonal entries $1,-1$ and Q is the matrix whose columns are the two eigenvectors. Clearly $D^{100}=$ Identity and so (as was explained in lecture), $A^{100}=Q D^{100} Q^{-1}=$ Identity. Then $A^{101}=A$.
2. Let A_{ϵ} be the matrix $A_{\epsilon}=\left[\begin{array}{lll}1 & \epsilon & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, where ϵ is a real number.
(a) For what values of ϵ is A_{ϵ} orthogonal?
(b) Assume $\epsilon \neq 0$. Find the eigenvalues and corresponding eigenspaces of A_{ϵ}.
(c) Assume $\epsilon \neq 0$. Show that A_{ϵ} is not diagonalizable.
(d) Let ϵ be any real number. Define the function $F: \mathbb{R} \rightarrow \mathbb{R}$ by letting $F(\epsilon)$ equal the dimension of the eigenspace of A_{ϵ} corresponding to eigenvalue 1 . Is F continuous at $\epsilon=0$? Hint: use (b) to find $\lim _{\epsilon \rightarrow 0} F(\epsilon)$, and compare this to $F(0)$.

Solution.

(a) There are a couple of ways one can do the first part.

Method 1. The columns of an orthogonal matrix are orthonormal vectors. Note that the second column of A_{ϵ} has square length $1+\epsilon^{2}$, so this equals one if and only if $\epsilon=0$, in which case A_{ϵ} is the identity, an orthogonal matrix. Thus, A_{ϵ} is orthogonal if and only if $\epsilon=0$.

Method 2. A_{ϵ} is orthogonal when $A_{\epsilon}^{T} A_{\epsilon}=I$. Calculate

$$
A_{\epsilon}^{T} A_{\epsilon}=\left[\begin{array}{lll}
1 & \epsilon & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
\epsilon & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1+\epsilon^{2} & \epsilon & 0 \\
\epsilon & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Hence A_{ϵ} is orthogonal if and only if ϵ is zero.
(b) $\operatorname{det}\left(\lambda I-A_{\epsilon}\right)=(\lambda-1)^{3}$, so A_{ϵ} has the single eigenvalue $\lambda=1$. The corresponding eigenspace is

$$
\operatorname{ker}\left(I-A_{\epsilon}\right)=\operatorname{ker}\left[\begin{array}{ccc}
0 & -\epsilon & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

since $\epsilon \neq 0$.
(c) We see in (b) that for $\epsilon \neq 0, A_{\epsilon}$ does not have a basis of eigenvectors. Therefore A_{ϵ} is not diagonalizable.
(d) From (b) we know that the eigenspace corresponding to eigenvalue 1 is span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ for $\epsilon \neq 0$; hence $F(\epsilon)=2$ for $\epsilon \neq 0$. So $\lim _{\epsilon \rightarrow 0} F(\epsilon)=2$. To calculate $F(0)$, note that A_{0} is just the identity matrix which has a full basis of eigenvectors (for instance, $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is a basis of eigenvectors). So $F(0)=3$. Since $\lim _{\epsilon \rightarrow 0} F(\epsilon)=2 \neq 3=F(0), F$ is not continuous at $\epsilon=0$.
3. Let $g(x, y, z)$ be a smooth function defined on the whole of \mathbb{R}^{3}.
(a) If ∇g has negative x component in the half space $x \geq 0$, must $g(1,3,8)$ be bigger than $g(2,3,8)$, and must $g(0,2,8)$ be bigger than $g(3,3,8)$? In each case prove or give a counter-example.

Let $f(x, y)=x^{3}+3 y^{2}-2 x^{2} y+6$.
(b) Find ∇f at $(2,3)$.
(c) Find the equation of the tangent plane to the graph of f at the point $(x, y)=(2,3)$.
(d) In what direction is the function f decreasing the most, and what is the rate of decrease in that direction?
(e) What is the rate of decrease of f in the direction $\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$?

Solution.

(a) i. If ∇g has negative x component for $x \geq 0$ then the onedimensional function $h(x)=g(x, 3,8)$ has negative derivative for $x \geq 0$ and thus is decreasing. [Extra: recall from one variable calculus that one proves this by the mean value theorem (e.g. by assuming $h(1) \leq h(2)$ and getting a contradiction)]. Thus, as g is decreasing, $g(1,3,8)>g(2,3,8)$.
ii. Let $g=(-x, 10 y, 0)$, then $\nabla g=(-1,10,0)$. Note, however, that $g(0,2,8)=20<g(3,3,8)=27$, and so we have a counterexample. There are many other possible counterexamples.
(b) $\nabla f=\left(3 x^{2}-4 x y, 6 y-2 x^{2}\right)$ and thus $\nabla f(2,3)=(-12,10)$.
(c) The equation for the tangent plane at $\left(x_{0}, y_{0}\right)$ is

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(y-y_{0}\right)
$$

So given that $\nabla f(2,3)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$, we have

$$
z=17-12(x-2)+10(y-3)
$$

So the tangent plane equation is

$$
z=11-12 x+10 y
$$

(d) f is decreasing the fastest in the direction $-\nabla f(2,3)=(12,-10)$. The rate of decrease is $\|-\nabla f(2,3)\|=\sqrt{12^{2}+(-10)^{2}}=\sqrt{244}=$ $2 \sqrt{61}$.
(e) Since the vector is already normalized, this is determined by computing

$$
\nabla f(2,3) \cdot\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)=\frac{-12-10}{\sqrt{2}}=-11 \sqrt{2}
$$

So $11 \sqrt{2}$ is the rate of decrease.
4. Consider the functions A and B defined on \mathbb{R}^{3} as follows:

$$
A(x, y, z)=x^{2}+x y-\sin (x y), B(x, y, z)=x^{2} y^{2} \cos \left(z^{2}\right) .
$$

(a) Suppose x and y are functions of two other variables, r and s. Write down the partials of A and B with respect to r and s in matrix notation.
(b) Simplify the your answer in (a) if $x=s+r, y=s r, z=s-r$.

Let $f(x, y)=x^{2}-3 x y+5 x-2 y+6 y^{2}-8$.
(c) Find the critical points of f.
(d) Characterize the critical points in terms of maxima, minima, or saddle points.

Solution.

(a) Let F be the mapping $(r, s) \mapsto(A, B)$. Then by the chain rule,

$$
\begin{aligned}
\mathbf{D} F & =\left[\begin{array}{ll}
\frac{\partial A}{\partial s} & \frac{\partial A}{\partial r} \\
\frac{\partial B}{\partial s} & \frac{\partial B}{\partial r}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\frac{\partial A}{\partial x} & \frac{\partial A}{\partial y} & \frac{\partial A}{\partial z} \\
\frac{\partial B}{\partial x} & \frac{\partial B}{\partial y} & \frac{\partial B}{\partial z}
\end{array}\right] \cdot\left[\begin{array}{cc}
\frac{\partial x}{\partial s} & \frac{\partial x}{\partial r} \\
\frac{\partial y}{\partial s} & \frac{\partial y}{\partial r} \\
\frac{\partial z}{\partial s} & \frac{\partial z}{\partial r}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 x+y-y \cos x y & x-x \cos x y & 0 \\
2 x y^{2} \cos z^{2} & 2 x^{2} y \cos z^{2} & -2 x^{2} y^{2} z \sin z^{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
\frac{\partial x}{\partial s} & \frac{\partial x}{\partial r} \\
\frac{\partial y}{\partial s} & \frac{\partial y}{\partial r} \\
\frac{\partial z}{\partial s} & \frac{\partial z}{\partial r}
\end{array}\right]
\end{aligned}
$$

(b) Putting $x=s+r, y=s r$, and $z=s-r$, we see that $\mathbf{D} F$ equals $A B$, where A is

$$
\left[\begin{array}{ccc}
2(s+r)+s r-s r \cos [(s+r) s r] & (s+r)-(s+r) \cos [(s+r) s r] & 0 \\
2(s+r) s^{2} r^{2} \cos (s-r)^{2} & 2(s+r)^{2} s r \cos (s-r)^{2} & -2(s+r)^{2} s^{2} r^{2}(s-r) \sin (s-r)^{2}
\end{array}\right]
$$

and B is

$$
\left[\begin{array}{cc}
1 & 1 \\
r & s \\
1 & -1
\end{array}\right]
$$

If one were to multiply this out, one would get, for example,

$$
\begin{aligned}
\frac{\partial A}{\partial s} & =2(s+r)+s r-s r \cos [(s+r) s r]+r[(s+r)-(s+r) \cos [(s+r) s r]] \\
& =2 s+2 r+2 s r+r^{2}-r^{2} \cos [(s+r) s r]
\end{aligned}
$$

(c) The critical points are found by setting the partial derivatives of f equal to zero; this gives the system

$$
\begin{array}{r}
2 x-3 y+5=0 \\
-3 x+12 y-2=0
\end{array}
$$

Solving this system, we see that the only critical point is $(-18 / 5,-11 / 15)$.
(d) The above critical point is a local (in fact, global) minimum, as can be seen from the fact that the Hessian is positive definite. The Hessian is

$$
\frac{1}{2}\left[\begin{array}{cc}
2 & -3 \\
-3 & 12
\end{array}\right]
$$

The top left entry is $\partial^{2} f / \partial x^{2}=2>0$ and the determinant is $15>0$, so the Hessian is indeed positive definite.
5. (a) Find the maxima and minima of the function

$$
f(x, y)=2 x^{2} y-x^{2}-y^{2} .
$$

on the region $x^{2}+y^{2} \leq 1$.
(b) Find the extrema of $f(x, y)=x y$ subject to the three conditions $2 x+3 y \leq 10,0 \leq x, 0 \leq y$.
(c) Consider the function $f(x, y)=a x^{2}+2 b x y+c y^{2}$. Suppose that the eigenvalues of the matrix

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

are both positive. Must the origin be a minimum of f ?

Solution.

(a) The critical points of f are found by solving the system

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=4 x y-2 x=0 \\
& \frac{\partial f}{\partial y}=2 x^{2}-2 y=0
\end{aligned}
$$

which gives the critical points $(0,0)$ and $(\pm 1 / \sqrt{2}, 1 / 2)$. Both points are inside the unit circle. The second derivative matrix is

$$
\left[\begin{array}{cc}
4 y-2 & 4 x \\
4 x & -2
\end{array}\right]
$$

which is negative definite at the origin (so the origin is a local maximum, with $f(0,0)=0$) and it is indefinite at the points $(\pm 1 / \sqrt{2}, 1 / 2)$, which are therefore saddle points.

One must now examine the behavior of f on the boundary using Lagrange multipliers. The Lagrange multiplier conditions ($\nabla f=$ $\lambda \nabla g$ and $g=0$), give (after canceling factors of 2):

$$
\begin{aligned}
2 x y-x & =\lambda x \\
x^{2}-y & =\lambda y \\
x^{2}+y^{2}-1 & =0
\end{aligned}
$$

If $x=0$, the solution is $(0, \pm 1)$ and if $x \neq 0$, the solution is found by canceling x in the first equation, solving for y and substituting into the remaining equations. This gives $\lambda= \pm 2 / \sqrt{3}-1$, $x= \pm \sqrt{2 / 3}$ and $y= \pm 1 / \sqrt{3}$. Evaluating f at these points gives the answer: $(0,0)$ is a maximum and the minimum value of f is $(-9-4 \sqrt{3}) / 9$, which occurs at the points $(\pm \sqrt{2 / 3},-1 / \sqrt{3})$ on the boundary.
(b) The region on which f is defined is the triangle in the first quadrant of the $x y$-plane bounded by the axes and the line $2 x+3 y=10$. Since $f_{x}=y, f_{y}=x$, we see there is no critical point strictly inside this region. Thus, the extrema must be on the boundary.

The boundary of this triangular region consists of 3 straight line segments, and we need to find the absolute maximum and minimum of f on this boundary. Clearly $f=0$ on both $x=0$ and $y=0$; since $f \geq 0$ in the region, the minimum value of 0 occurs
on the two axes. To find the maximum, we only need to solve the following Lagrange multiplier system with $x>0$ and $y>0$:

$$
\begin{aligned}
y & =2 \lambda \\
x & =3 \lambda \\
2 x+3 y & =10
\end{aligned}
$$

Solving these gives $\lambda=\frac{5}{6}, x=\frac{5}{2}, y=\frac{5}{3}$. Also, $f\left(\frac{5}{2}, \frac{5}{3}\right)=\frac{25}{6}$. In summary, the absolute maximum value is $\frac{25}{6}$ which occurs at the point $(5 / 2,5 / 3)$ and the absolute minimum value of 0 occurs at points on the two axes.
(c) Yes. Call the eigenvalues λ and μ. The condition that $\lambda>0$ and $\mu>0$ is equivalent to the positive definiteness of the Hessian, which is half of the second derivative matrix,

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

One should relate this to the second derivative conditions given in the book, namely that $a>0$ and $a c-b^{2}>0$. One way to do this is as follows. Taking the trace and determinant of A (recall that the trace is the sum of the eigenvalues and the determinant is their product), we get

$$
\begin{aligned}
\lambda+\mu & =a+c \\
\lambda \mu & =a c-b^{2}
\end{aligned}
$$

From this, it is clear that the conditions $a>0$ and $a c-b^{2}>0$ are equivalent to the conditions $\lambda>0$ and $\mu>0$.

